研究成果
1. SIMULATIONS (Tsunami, Agent-Based, etc.)
- Adriano, B., Gokon, H., Mizutani, A., Mas, E. & Koshimura, S. (2025). Understanding the relationship between building damage and tsunami inundation due to the 2024 Noto Peninsula Earthquake. Ocean Engineering, 340, 122179. https://doi.org/10.1016/j.oceaneng.2025.122179
- Adriano, B., Jimenez, C., Mas, E. & Koshimura, S. (2025). Revising the seismic source of the 1979 Tumaco-Colombia earthquake (Mw=8.1) for future tsunami hazard assessment. Physics of the Earth and Planetary Interiors, 362, 107344. https://doi.org/10.1016/j.pepi.2025.107344
- Dong, X., Mas, E., Adriao, B. & Koshimura, S. (2025). Towards real-time extraction of cascading effect and spatiotemporal analysis using social media data. International Journal of Disaster Risk Reduction, 125, 105512. https://doi.org/10.1016/j.ijdrr.2025.105512
- Nagata, S., Mas, E., Taked, Y., Nakaya, T. & Koshimura, S. (2025). Multiple hazards and population change in Japan's Suzu City after the 2024 Noto Peninsula Earthquake. Progress in Disaster Science, 25, 100396. https://doi.org/10.1016/j.pdisas.2024.100396
- Koshimura, S., Mori, N., Chikasada, N., Udo, K., Ninomiya, J., Okumura, Y. & Mas, E. (2025) Probabilistic Tsunami Hazard and Risk Analysis. In Advanced Topics..., 543–559. https://doi.org/10.1016/b978-0-443-18987-6.00024-5
- Flores, C., Lee, H. S. & Mas, E. (2024) Understanding Tsunami Evacuation via a Social Force Model While Considering Stress Levels Using Agent-Based Modelling. Sustainability, 16, 4307. https://doi.org/10.3390/su16104307
- Mizutani, A., Adriano, B., Mas, E. & Koshimura, S. (2024). Fault Model of the 2024 Noto Peninsula Earthquake Based on Aftershock, Tsunami, and GNSS Data. https://doi.org/10.21203/rs.3.rs-4167995/v1
- Mas, E., Moya, L., Gonzales, E. & Koshimura, S. (2024). Reinforcement learning-based Tsunami evacuation guidance system. International Journal of Disaster Risk Reduction, 110, 104625. https://doi.org/10.1016/j.ijdrr.2024.104625
- Nagata, S., Mas, E., Taked, Y., Nakaya, T. & Koshimura, S. (2024a). Multiple hazards and population change in Japan's Suzu City after the 2024 Noto Peninsula Earthquake. Progress in Disaster Science, 100396. https://doi.org/10.1016/j.pdisas.2024.100396
- Adriano, B., Moya, L., Mas, E., Miura H., Matsuoka, M. & Koshimura, S. (2024). Urban Vulnerability Analysis in the Rimac River Basin using High-Resolution Imagery. IGARSS 2024, 3635–3638. https://doi.org/10.1109/igarss53475.2024.10642715
- Flores, C., Lee, H. S., Mas, E. & Salar, J. (2023). Tsunami evacuation in a massive crowd event using an agent-based model. Coastal Engineering Proceedings, 37, 62. https://doi.org/10.9753/icce.v37.management.62
- Jimenez, C., Morales, J., Estrada, M., Adriano, B., Mas, E. & Koshimura, S. (2023). Estimation of the Seismic Source of the 1974 Lima Peru Earthquake and Tsunami (Mw 8.1). Journal of Disaster Research, 18(8), 825–834. https://doi.org/10.20965/jdr.2023.p0825
- KAWAI, S., SATO, S., MAS, E., SHINKA, A. & IMAMURA, F. (2023). Promoting evacuation on foot to alleviate traffic congestion. Japanese Journal of JSCE, 79(17), 23–17182. https://doi.org/10.2208/jscejj.23-17182
- Hachiya, D., Mas, E. & Koshimura, S. (2022). RL model of multiple UAVs for transporting emergency supplies. Applied Sciences, 12(20), 10427. https://doi.org/10.3390/app122010427
- Mas, E., M.D.,Egawa, S., M.D., Sasaki, H. & Koshimura, S. (2022). Modeling search and rescue, medical team response and patient transport after a tsunami. E3S Web of Conferences, 340, 05001. https://doi.org/10.1051/e3sconf/202234005001
- Dong, L., Bai, Y., Xu, Q. & Mas, E. (2022) Optimizing post-disaster resource allocation with Q-learning. In LNCS, 256–262. https://doi.org/10.1007/978-3-031-12426-6_21
- Mas, E., Moya,L. & Koshimura, S. (2022). Optimization of Tsunami Evacuation with Reinforcement Learning. SSRN. https://doi.org/10.2139/ssrn.4214384
- Hashimoto, M., Mas, E., Egawa S., Sano, D. & Koshimura, S. (2022). Flood Hazard-Based Evacuation Curve Using Mobile Spatial Statistics. SSRN. https://doi.org/10.2139/ssrn.4271169
- Ito, E., Kosaka, T., Hatayama, M., Urra, L., Mas, E. & Koshimura, S. (2021). Extracting difficult-to-evacuate areas using tsunami simulation. IJDRR, 64, 102486. https://doi.org/10.1016/j.ijdrr.2021.102486
- León, J., Mas, E., Catalan, P. A., et al. (2021). Calibrated tsunami evacuation models using real-world data (Coquimbo–La Serena). IOP EES. https://doi.org/10.1088/1755-1315/630/1/012005
- Nagasawa, R., Mas, E., Moya,L. & Koshimura, S. (2021). Model-based analysis of multi-UAV path planning for post-disaster damage surveying. Scientific Reports, 11, 18588. https://doi.org/10.1038/s41598-021-97804-4
- Mas, E., Abe, Y., M.D., Egawa, S., M.D., Sasaki, H. & Koshimura, S. (2021). Agent-based modeling of disaster response teams after the 2011 Tohoku tsunami. AIWEST2021.
- Nakano, G., Yamori, K., Miyashita, T., Urra, L., Mas, E. & Koshimura, S. (2020). School evacuation drills + tsunami simulation for consensus-making. IJDRR, 51, 101803. https://doi.org/10.1016/j.ijdrr.2020.101803
- Paez-Ramirez, J., Lizarazo-Marriaga, J., Medina, S., Estrada, M., Mas, E. & Koshimura, S. (2020). Comparative study of fragility functions for tsunami building damage (Tumaco). Coastal Engineering Journal, 62(3), 1–11. https://doi.org/10.1080/21664250.2020.1726558
- Maly, E., Terada, K., LeVeque, R. J., ... Mas, E. (2020) International collaboration on M9 Disaster Science: session report. Journal of Disaster Research, 15(7), 890–899. https://doi.org/10.20965/jdr.2020.p0890
- Mas, E. & Koshimura, S. (2020). Tsunamis in Latin American countries. Coastal Engineering Journal, 62(3), 349–349. https://doi.org/10.1080/21664250.2020.1798147
- Yamamoto, Y., Kozono, Y., Mas, E., ... (021). Applicability of calculation formulae of impact force by tsunami driftage. JMSE, 9(5), 493. https://doi.org/10.3390/jmse9050493
- Yosritzal, Putra, H., Kemal, B. M., Mas, E. & Purnawan. (2020). Factors influencing evacuation walking speed in Padang. Advances in Engineering Research, 193, 125–130. https://doi.org/10.2991/aer.k.200220.026
- Mas, E., Moya,L. & Koshimura, S. (2020, Sept 13). Tsunami evacuation guidance using RL. 17th WCEE.
- Escobar, R. S., Diaz, L. O., ... Mas, E. (2020) Tsunami hazard assessment for Colombia. Coastal Engineering Journal, 62(4), 1–13. https://doi.org/10.1080/21664250.2020.1818362
2. REMOTE SENSING
- Wiguna, S., Adriano, B., Vescovo, R., Mas, E., Mizutani, A. & Koshimura, S. (2024). Building damage mapping of the 2024 Noto Peninsula Earthquake using semi-supervised learning and VHR optical imagery. IEEE GRSL, 21, 1–5. https://doi.org/10.1109/lgrs.2024.3407725
- Ezaki, Y., Ho, C. Y., Adriano, B., Mas, E. & Koshimura, S. (2024). Evaluation of simulated SAR images for building damage classification. IEEE GRSL. https://doi.org/10.1109/lgrs.2024.3520251
- Ho, C. Y., Mas, E., Adriano, B. & Koshimura, S. (2024b). Feasibility of ray-tracing SAR simulation for building damage assessment. IEEE JSTARS. https://doi.org/10.1109/jstars.2024.3418412
- Ho, C. Y., Mas, E., Adriano, B. & Koshimura, S. (2024a). Comparative analysis of detailed features in 3D models for SAR simulation. IGARSS 2024, 1750–1754. https://doi.org/10.1109/igarss53475.2024.10640983
- Wiguna, S., Adriano, B., Mas, E. & Koshimura, S. (2024a). Assessment of DL models trained on global RS imagery in real-context emergency response. IGARSS 2024, 1736–1740. https://doi.org/10.1109/igarss53475.2024.10641821
- Bai, Y., Yang, Z., Yu, J., Ju, R.-Y., Yang, B., Mas, E. & Koshimura, S. (2024). Flood data analysis on SpaceNet 8 using Apache Sedona. arXiv. https://doi.org/10.48550/arxiv.2404.18235
- Moya, L., Mas, E. & Koshimura, S. (2023). Flood inundation depth estimation from SAR-based flood extent and DEM. IGARSS 2023, 337–340. https://doi.org/10.1109/igarss52108.2023.10283297
- Moya, L., Mas, E. & Koshimura, S. (2022). Sparse representation-based inundation depth estimation using SAR & DEM. IEEE JSTARS. https://doi.org/10.1109/jstars.2022.3215719
- Bai, Y., Wu, W., Yang, Z., Yu, J., Zhao, B., Liu, X., Yang, H., Mas, E. & Koshimura, S. (2021). Detecting permanent and temporary water by fusing Sentinel-1/2 with deep learning (Sen1Floods11). Remote Sensing, 13(11), 2220. https://doi.org/10.3390/rs13112220
- Moya, L., Hashimoto, M., Mas, E. & Koshimura, S. (2021). Automatic collection of training samples for flooded areas. IGARSS 2021, 8305–8308. https://doi.org/10.1109/igarss47720.2021.9554446
- Moya, L., Geiss, C., Hashimoto, M., Mas, E., Koshimura, S. & Strunz, G. (2021). Disaster intensity-based selection of training samples for RS building damage classification. IEEE TGRS. https://doi.org/10.1109/tgrs.2020.3046004
- Okada, G., Moya, L., Mas, E. & Koshimura, S. (2021). News media to support ML-based damage mapping. Remote Sensing, 13(7), 1401. https://doi.org/10.3390/rs13071401
- Bai, Y., Hu, J., Su, J., Liu, X., Liu, H., He, X., Meng, S., Mas, E. & Koshimura, S. (2020). Semi-Siamese benchmark for building damage (xBD). Remote Sensing, 12(24), 4055. https://doi.org/10.3390/rs12244055
- Moya, L., Mas, E. & Koshimura, S. (2020). Learning from 2018 Western Japan heavy rains to detect floods during Typhoon Hagibis. Remote Sensing, 12(14), 2244. https://doi.org/10.3390/rs12142244
- Moya, L., Muhari, A., Adriano, B., Koshimura, S., Mas, E., Marva-Perez, L. R. & Yokoya, N. (2020). Detecting urban changes for early response (Sulawesi 2018). Remote Sensing of Environment, 242, 111743. https://doi.org/10.1016/j.rse.2020.111743
- Koshimura, S., Moya, L., Mas, E. & ai, Y. (2020). Tsunami damage detection with remote sensing: a review. Geosciences, 10(5), 177. https://doi.org/10.3390/geosciences10050177
- Zhao, L., Hu, J., Bi, J., Bai, Y., Mas, E. & Koshimura, S. (2024b). AI-enhanced UAVs for wildfire surveillance (FLAME dataset). IROS 2024, 8063–8068. https://doi.org/10.1109/iros58592.2024.10801629
- Zhao, L., Hu, J., Bi, J., Bai, Y., Mas, E. & Koshimura, S. (2024a). AI-enhanced UAVs for wildfire surveillance (FLAME) — preprint. arXiv. https://doi.org/10.48550/arxiv.2409.00510
3. DIGITAL TWIN
- Koshimura, S., Adriano, B., Mas, E., Nagat, S. & Takeda, Y. (2024). Tsunami Digital Twin – Concept, progress, and application to the 2024 Noto Peninsula event. EGUsphere. https://doi.org/10.5194/egusphere-egu24-14673
- Kosaka, N., Moriguchi, S., Shibayama, A., Kura, T., Shigematsu, N., Okumura, K., Mas, E., Okumua, M., Koshimura, S., Terada, K., Fujino, A., Matsubara, H. & Hisada, M. (2024). A study on digital model for decision-making in crisis response. Journal of Disaster Research, 19(3), 489–500. https://doi.org/10.20965/jdr.2024.p0489
- Koshimura, S. & Mas, E. (2023). Digital twin computing for enhancing resilience of disaster response systems. EGUsphere abstracts. https://doi.org/10.5194/egusphere-egu23-11756